《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 基于PSO優化小波變換的測井信號去噪研究
基于PSO優化小波變換的測井信號去噪研究
2022年電子技術應用第11期
魏振華1,2,3,胥越峰2,劉志鋒1,2,3,舒志浩2
1.核技術應用教育部工程研究中心,江西 南昌330013;2.東華理工大學 信息工程學院,江西 南昌330013; 3.江西省放射性地學大數據技術工程實驗室,江西 南昌330013
摘要: 小波變換被廣大科研工作者用于測井信號去噪研究上,而小波參數的選取直接影響最后的去噪效果,所以需要設計獲取測井信號最佳小波變換參數的算法。為應對測井信號處理中多種多樣的情況,創新性地提出用粒子群算法來改進小波變換參數的選取,并應用隨機慣性權重策略改變粒子群算法權重參數,提升粒子群算法收斂速度,增強搜索尋優能力,引入自然選擇機制以增加種群多樣性,獲得對應測井數據的最佳小波變換參數,將最佳小波變換參數應用到閾值法小波變換去噪中,有效分離了有用信號和無用噪聲。該算法有效地提高了測井信號的信噪比,降低了均方根差,實現了對測井信號中噪聲的有效去除。
中圖分類號: TP301.6
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.223028
中文引用格式: 魏振華,胥越峰,劉志鋒,等. 基于PSO優化小波變換的測井信號去噪研究[J].電子技術應用,2022,48(11):115-120.
英文引用格式: Wei Zhenhua,Xu Yuefeng,Liu Zhifeng,et al. Research on log signal denoising based on PSO optimized wavelet transform[J]. Application of Electronic Technique,2022,48(11):115-120.
Research on log signal denoising based on PSO optimized wavelet transform
Wei Zhenhua1,2,3,Xu Yuefeng2,Liu Zhifeng1,2,3,Shu Zhihao2
1.Engineering Research Center of Nuclear Technology Application(East China University of Technology), Ministry of Education,Nanchang 330013,China; 2.School of Information Engineering,East China University of Technology,Nanchang 330013,China; 3.Jiangxi Provincial Engineering Laboratory of Radiology Big Data Technology,Nanchang 330013,China
Abstract: Wavelet transform is widely used in the research of logging signal denoising, and the selection of wavelet parameters directly affects the final denoising effect, so it is necessary to design an algorithm to obtain the best wavelet transform parameters of logging signal. In this paper, the random inertia weight strategy is innovatively proposed to change the weight parameters of particle swarm optimization algorithm, which improves the convergence speed of particle swarm optimization algorithm, enhances the ability of searching for optimization, and obtains the optimal wavelet transform parameters. The optimal wavelet transform parameters are applied to the wavelet denoising of soft threshold method, which can effectively separate the useful signal and useless noise. This algorithm can effectively improve the signal-to-noise ratio of logging signal, reduce the root mean square difference, and realize the effective removal of noise in logging signal.
Key words : logging signal denoising;particle swarm optimization;the wavelet parameters;wavelet transform denoising;soft threshold method

0 引言

    在測井信號的采集、處理、轉發過程中,由于環境、儀器、人為等因素的干擾測井信號中總會存在噪聲,如果不經處理直接使用這些帶噪信號會對礦產勘探產生誤差,更有嚴重者甚至會造成重大的經濟損失。因此,在信號處理的過程中去除測井信號的噪聲就顯示出了必要性。測井信號去噪有很多方法,小波變換突破了以傅里葉為代表的傳統方法的顯著缺陷,在時頻域上都有著亮眼的表現,是去噪方法的主要技術之一。

    主流的研究表明小波變換的參數設置會直接影響最后的濾波去噪效果,如李維松等統合硬、軟以及Garrote閾值去噪的優點,構造出一個新的改進閾值函數,在突變性及平滑性信號方面取得了更優的降噪成果[1];朱榮亮等為更好地濾除噪聲,提出一種新閾值函數,通過仿真確定最佳小波函數類型和分解層數[2];謝政宇等根據均方根誤差和平滑度的變化特性構建了一種復合評價指標,通過評價指標來優選小波參數[3]。但是在對測井信號的處理中,因測井數據的龐大與多樣性,單獨改進閾值函數等對不同地區、不同井、不同井次、不同測井曲線的去噪效果不夠好,所以在參考了解文獻[4]-[6]中體現出粒子群算法尋找最優點的優勢以及測井信號處理的實際需求后,采取群智能算法中的粒子群算法(Particle Swarm Optimization,PSO)來獲取不同目標下的最佳小波變換參數,并對粒子群算法做一定的優化。




本文詳細內容請下載:http://www.rjjo.cn/resource/share/2000005016。




作者信息:

魏振華1,2,3,胥越峰2,劉志鋒1,2,3,舒志浩2

(1.核技術應用教育部工程研究中心,江西 南昌330013;2.東華理工大學 信息工程學院,江西 南昌330013;

3.江西省放射性地學大數據技術工程實驗室,江西 南昌330013)




wd.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 国产精品区在线12p 国产精品人成 | 久久精品久久久久 | 欧美激情久久久久久久久 | 国产精品亚洲一区二区三区在线观看 | 亚洲视频在线免费 | 国产区91 | 精品一区二区三区免费观看 | 免费一级大片 | 男人的亚洲天堂 | 国产成人一区在线播放 | 精品精品国产高清a毛片 | 日韩视频一区二区三区 | 国产成人福利视频在线观看 | 成年人毛片 | 成人免费黄网站 | 99久久精品视香蕉蕉er热资源 | 欧美中文字幕 | 久草视频免费在线观看 | 久草中文在线观看 | 91成年人视频 | 久久99国产精品免费观看 | 欧美成人精品大片免费流量 | 美女被躁免费视频软件 | 久久精品中文字幕一区 | 无国产精品白浆是免费 | 国产一级a毛片 | 欧美一级视频精品观看 | 日韩欧美视频在线播放 | 特黄特色大片免费播放路01 | 国产高清一区二区三区视频 | 成人中文字幕在线高清 | 亚洲悠悠色综合中文字幕 | 曰本女同互慰高清在线观看 | 在线毛片观看 | 成人影视免费 | 日本在线 | 中文 | 国产精品亚洲片在线va | 国产精品久久久 | 欧美大片毛片大片 | 爽爽视频在线观看 | 亚洲视频在线视频 |