《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 其他 > 設(shè)計(jì)應(yīng)用 > 基于互信息變量選擇的燃煤機(jī)組SCR脫硝系統(tǒng)PSO-ELM建模
基于互信息變量選擇的燃煤機(jī)組SCR脫硝系統(tǒng)PSO-ELM建模
網(wǎng)絡(luò)安全與數(shù)據(jù)治理 9期
張瑾,姜浩,金秀章
(華北電力大學(xué)控制與計(jì)算機(jī)工程學(xué)院,河北保定071003)
摘要: 針對(duì)燃煤機(jī)組SCR脫硝系統(tǒng)出口NOx濃度存在測(cè)量滯后以及吹掃時(shí)數(shù)據(jù)失真等問題,提出了一種基于特征提取和粒子群算法(PSO)優(yōu)化極限學(xué)習(xí)機(jī)(ELM)超參數(shù)的燃煤機(jī)組SCR脫硝系統(tǒng)模型。利用互信息(MI)進(jìn)行時(shí)間遲延補(bǔ)償,采用最大相關(guān)最小冗余(mRMR)方法篩選輔助變量,通過PSO優(yōu)化算法確定ELM最優(yōu)超參數(shù)并建立預(yù)測(cè)模型,最后進(jìn)行對(duì)比驗(yàn)證。仿真結(jié)果表明:采用本文方法所建立的PSO-ELM預(yù)測(cè)模型的均方誤差和相關(guān)系數(shù)分別為0.931 4 mg/m3和0.978 6,預(yù)測(cè)精度高,能夠?yàn)槊撓跸到y(tǒng)出口NOx的現(xiàn)場(chǎng)優(yōu)化控制提供技術(shù)支持。
中圖分類號(hào):X773
文獻(xiàn)標(biāo)識(shí)碼:A
DOI:10.19358/j.issn.2097-1788.2023.09.013
引用格式:張瑾,姜浩,金秀章.基于互信息變量選擇的燃煤機(jī)組SCR脫硝系統(tǒng)PSO-ELM建模[J].網(wǎng)絡(luò)安全與數(shù)據(jù)治理,2023,42(9):88-95.
PSO-ELM modeling of SCR denitrification system of coal-fired units based on mutual information variable selection
Zhang Jin,Jiang Hao ,Jin Xiuzhang
( School of Control and Computer Engineering,North China Electric Power University,Baoding 071003,China)
Abstract: Aiming at the problems of NOx concentration at the outlet of selective catalytic reduction (SCR) denitration system of coal-fired units, such as measurement lag and data distortion during purging, a SCR denitration system model of coal-fired units based on feature extraction and particle swarm optimization (PSO) to optimize extreme learning machine (ELM) hyperparameters is proposed in this paper. Mutual information (MI) was used to compensate the time delay, maximum correlation minimum redundancy (mRMR) was used to screen the auxiliary variables, and the optimal ELM hyperparameters were determined by PSO optimization algorithm and the prediction model was established. Finally, the comparison and verification were carried out. The simulation results show that the mean square error and correlation coefficient of the PSO-ELM prediction model established by the method in this paper are 0.931 4 mg/m3 and 0.978 6 respectively, with high prediction accuracy, which can provide technical support for the on-site optimization control of NOx at the exit of the denitrification system.
Key words : mutual information;PSO algorithm;SCR-DeNOx system;extreme learning

0     引言

燃煤機(jī)組產(chǎn)生的氮氧化物(NOx)是大氣污染的首要排放物之一,在空氣質(zhì)量方面影響較為嚴(yán)重[1]。煙氣排放連續(xù)檢測(cè)系統(tǒng)(Continuous Emission Monitoring Systems,CEMS)對(duì)煙氣取樣管路要按時(shí)反向吹掃,以避免積灰堵塞,從而會(huì)導(dǎo)致NOx測(cè)量結(jié)果存在間斷性失真,同時(shí),由于煙氣取樣管路長(zhǎng)度一般為40~60 m,造成測(cè)量結(jié)果出現(xiàn)時(shí)滯現(xiàn)象,控制系統(tǒng)的控制難度也因此得到提升。因此,建立脫硝系統(tǒng)預(yù)測(cè)模型,對(duì)于燃煤機(jī)組的優(yōu)化運(yùn)行,噴氨量的控制以及污染物的監(jiān)測(cè)管理都具有重要意義[2]。

隨著神經(jīng)網(wǎng)絡(luò)的發(fā)展,許多建模方法被應(yīng)用到脫硝系統(tǒng)當(dāng)中。楊文玉等人[3]利用RBF神經(jīng)網(wǎng)絡(luò)建立了脫硝系統(tǒng)出口NOx的預(yù)測(cè)模型,該模型在處理時(shí)序預(yù)測(cè)問題時(shí)并沒有明顯優(yōu)勢(shì)。張淑清等人[4]利用ELM神經(jīng)網(wǎng)絡(luò)建立了電網(wǎng)負(fù)荷的預(yù)測(cè)模型,并利用飛蛾優(yōu)化算法對(duì)模型參數(shù)進(jìn)行優(yōu)化,該文所用訓(xùn)練數(shù)據(jù)過少,容易導(dǎo)致模型過擬合。劉延泉等人[5]將互信息與LSSVM方法結(jié)合,對(duì)脫硝系統(tǒng)入口NOx濃度進(jìn)行了預(yù)測(cè),但模型未考慮輸入變量的對(duì)模型的影響。

除了建模方法,特征選擇也會(huì)影響模型的預(yù)測(cè)能力。特征選擇常見的方法有過濾式(Filter)、封裝式(Wrapper)和嵌入式(Embedded)三種。輸入變量的直接選擇決定了模型的結(jié)構(gòu)與輸出,輸入變量的選擇通常對(duì)工業(yè)機(jī)理進(jìn)行分析,從待選變量進(jìn)行篩選獲取[6-7]。金秀章等人[8]利用mRMR算法篩選出符合模型的輸入變量,建立了出口SO2質(zhì)量濃度預(yù)測(cè)模型,但正則化仍不能計(jì)算出隱層節(jié)點(diǎn)的具體數(shù)量。趙文杰等人[9]利用互信息與優(yōu)化算法結(jié)合確定系統(tǒng)最優(yōu)的輸入變量集合,將互信息特征提取方法應(yīng)用到高維系統(tǒng)中,建立了脫硝系統(tǒng)的預(yù)測(cè)模型,但該方法計(jì)算量大,耗時(shí)較長(zhǎng),實(shí)施起來較為困難。錢虹等人[10]采用隨機(jī)森林算法進(jìn)行變量選擇,并對(duì)SCR脫硝系統(tǒng)出口NOx質(zhì)量濃度進(jìn)行了預(yù)測(cè),但模型未解決煙氣采樣管道長(zhǎng)度較長(zhǎng)而導(dǎo)致的時(shí)滯問題。


本文詳細(xì)內(nèi)容請(qǐng)下載:http://www.rjjo.cn/resource/share/2000005666




作者信息:

張瑾,姜浩,金秀章

(華北電力大學(xué)控制與計(jì)算機(jī)工程學(xué)院,河北保定071003)

微信圖片_20210517164139.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
主站蜘蛛池模板: 成年人一级片 | 亚洲综合色一区二区三区小说 | 欧美精品高清在线观看 | 成人欧美一区二区三区在线观看 | 精品亚洲成a人片在线观看 精品亚洲成a人在线播放 | 在线はじめてのおるすばん | 精品综合在线 | 精品久久久在线观看 | 伊人网在线免费视频 | 国产亚洲视频在线播放大全 | 久草视频在线网 | 这里只有精品国产 | 国产成人精品实拍在线 | 亚洲精品国产字幕久久不卡 | 97久久精品午夜一区二区 | 色综合精品 | 99久久国产免费 - 99久久国产免费 | 最新国产毛片 | 欧美一区二区三区视频在线观看 | 欧美一线不卡在线播放 | 久久久久久久91精品免费观看 | 中文字幕视频网站 | 国产在线视频一区二区三区 | 国产高清在线观看视频手机版 | 99视频精品全部 在线 | 亚洲人成影院午夜网站 | 亚洲人成免费网站 | 久久亚洲私人国产精品va | 成人伊人青草久久综合网 | 怡红院美国十次成人影院 | 国产三级小视频在线观看 | 96精品视频在线播放免费观看 | 色久网 | 日韩美一区二区 | 欧美xxxxx毛片 | 天天看片天天爽 | 国产成人精品无缓存在线播放 | 美女图片1314mm爽爽爽 | 亚洲欧美日韩高清在线看 | 国产精品久久福利网站 | 欧美成人视 |