《電子技術(shù)應用》
您所在的位置:首頁 > 電源技術(shù) > 設(shè)計應用 > 基于圖像識別的用電安全檢查子系統(tǒng)設(shè)計與實現(xiàn)*
基于圖像識別的用電安全檢查子系統(tǒng)設(shè)計與實現(xiàn)*
電子技術(shù)應用 2023年10期
劉禹澤,潘明明,鄒 華,王白根,王 歐,趙 騫,劉輝舟
(1.北京郵電大學 網(wǎng)絡(luò)與交換技術(shù)國家重點實驗室,北京 100876;2.中國電力科學研究院有限公司,北京 100192; 3.國網(wǎng)安徽省電力有限公司安慶供電公司,安徽 安慶246000;4.國網(wǎng)安徽省電力有限公司,安徽 合肥230061)
摘要: 用電安全檢查是保障電網(wǎng)正常運行的重要途徑,傳統(tǒng)的用電安全檢查主要依賴人工的形式對存在安全隱患的場所、設(shè)備進行逐一排查。隨著人工智能技術(shù)的發(fā)展,基于圖像數(shù)據(jù)的智能分析可協(xié)助及時排查相關(guān)安全隱患,也可減少對于檢查人員的經(jīng)驗要求,在提升效率的同時,保障安全檢查準確性。為了更好地提升用電安全檢查的準確性,提出了基于YOLO神經(jīng)網(wǎng)絡(luò)的用電隱患識別算法,該算法可對用電設(shè)備的指示燈進行識別,并與正常狀態(tài)進行比對,發(fā)現(xiàn)異常狀態(tài)及時發(fā)出告警信息。基于該算法,還設(shè)計并實現(xiàn)了基于圖像識別的用電安全檢查子系統(tǒng)。通過實際數(shù)據(jù)驗證,系統(tǒng)對設(shè)備指示燈狀態(tài)不一致性檢測等可達到較高水平,滿足對用電安全檢查的需求。
中圖分類號:TM71 文獻標志碼:A DOI: 10.16157/j.issn.0258-7998.234109
中文引用格式: 劉禹澤,潘明明,鄒華,等. 基于圖像識別的用電安全檢查子系統(tǒng)設(shè)計與實現(xiàn)[J]. 電子技術(shù)應用,2023,49(10):23-28.
英文引用格式: Liu Yuze,Pan Mingming,Zou Hua,et al. Design and implementation of electricity safety inspection subsystem based on monitoring image data[J]. Application of Electronic Technique,2023,49(10):23-28.
Design and implementation of electricity safety inspection subsystem based on monitoring image data
Liu Yuze1,Pan Mingming2,Zou Hua1,Wang Baigen3,Wang Ou3,Zhao Qian4,Liu Huizhou4
(1.State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China;2.China Electric Power Research Institute, Beijing 100192, China; 3.Anqing Power Supply Company of State Grid Anhui Electric Power Co., Ltd., Anqing 246000, China; 4.State Grid Anhui Electric Power Co., Ltd., Hefei 230061, China)
Abstract: Electricity safety inspection is an important way to ensure the normal operation of the power grid. Traditional electricity safety inspection mainly relies on manual inspection of places and equipment with safety hazards one by one. With the development of artificial intelligence technology, intelligent analysis based on image data can assist in timely identification of relevant safety hazards, reduce the experience requirements for inspectors, and improve efficiency while ensuring the accuracy of safety inspections. In order to better improve the accuracy of electricity safety inspection, the article proposes an electricity hazard identification algorithm based on YOLO neural network, which can dynamically identify the indicator lights of electrical equipment and compare them with normal states, and promptly issue alarm messages when abnormal states are found. Based on this algorithm, the article also designed and implemented an electricity safety inspection subsystem based on image recognition. Through actual data validation, the system can achieve a high level of inconsistent detection of equipment indicator status, meeting the demand for electricity safety inspection.
Key words : target detection algorithm;electricity safety inspection sub system;image recognition

0 引言

工業(yè)企業(yè)價值鏈是指將原材料轉(zhuǎn)化為最終產(chǎn)品或服務的整個過程,包括從產(chǎn)品設(shè)計、原材料采購、生產(chǎn)制造、銷售與分銷等環(huán)節(jié),用電安全檢查事關(guān)生產(chǎn)制造這個重要環(huán)節(jié),保證工業(yè)企業(yè)價值鏈正常運作。

2020年4月,國務院安全生產(chǎn)委員會印發(fā)了《全國安全生產(chǎn)專項整治三年行動計劃》,明確要求各地區(qū)、各企業(yè)全面排查現(xiàn)有風險,認真辨識、科學評估,從而制定有效的防控措施。客戶安全用電檢查服務是政府賦予電網(wǎng)企業(yè)的基本職責,國家電網(wǎng)有限公司全面貫徹國務院安委會《全國安全生產(chǎn)專項整治三年行動計劃》,進一步提升客戶用電安全管理水平,服務客戶保障用電安全。

目前,安全用電檢查工具無法確保現(xiàn)場人員完整按照標準作業(yè)流程對設(shè)備、人員、管理安全隱患檢查進行全面檢查和評價,容易存在管理盲區(qū),難以及時識別風險。主要體現(xiàn)為缺乏智能識別工具,難以實時對現(xiàn)場進行記錄、測量及輔助判定。典型如作業(yè)人員在現(xiàn)場觀察相關(guān)設(shè)備狀態(tài)時,出現(xiàn)人工錯誤,對用電設(shè)備存在的安全隱患產(chǎn)生漏判等。

為了解決上述問題,本文擬借助移動終端攝像頭的拍攝能力以及后臺的處理能力提出一種基于圖像識別用電安全檢查子系統(tǒng)。該系統(tǒng)將改變現(xiàn)有安全用電檢查的現(xiàn)狀,實現(xiàn)安全檢查作業(yè)現(xiàn)場數(shù)據(jù)狀態(tài)與后臺實時比對,實現(xiàn)用電安全檢查的智能化。


本文詳細內(nèi)容請下載:http://www.rjjo.cn/resource/share/2000005708




作者信息:

劉禹澤1,潘明明2,鄒華1,王白根3,王歐3,趙騫4,劉輝舟4

(1.北京郵電大學 網(wǎng)絡(luò)與交換技術(shù)國家重點實驗室,北京 100876;2.中國電力科學研究院有限公司,北京 100192;
3.國網(wǎng)安徽省電力有限公司安慶供電公司,安徽 安慶246000;4.國網(wǎng)安徽省電力有限公司,安徽 合肥230061)


微信圖片_20210517164139.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
主站蜘蛛池模板: 久久综合精品国产一区二区三区无 | 亚洲碰碰 | 女人被男人躁得好爽免费文 | 久久久久日韩精品无 | 欧美国产合集在线视频 | 久久se精品一区二区国产 | 亚洲特级黄色片 | 久操影视| 波多野结衣免费视频观看 | 欧美激情一区二区三区高清视频 | 成人网18免费 | 亚洲一区二区三区精品影院 | 亚洲精品久久久久综合中文字幕 | 亚洲精品成人7777在线观看 | 久久91精品国产99久久yfo | 在线 | 一区二区三区 | 国产成人一区二区三区影院免费 | 欧美亚洲不卡 | 国产97视频 | 欧美视频区 | 国产三级成人 | 国产福利久久 | 成人午夜影院在线观看 | 日韩精品一区二区三区免费观看 | 日日噜噜噜夜夜爽爽狠狠69 | 国产大陆精品另类xxxx | 亚洲精品一区二区三区四区 | 最新亚洲精品国自产在线 | 2021国产精品自拍 | 99精选视频| 日韩在线免费 | 综合久久久久久 | 国产孕妇孕交视频 | 久久精品视频在线观看榴莲视频 | 国产精品视频第一区二区三区 | 黑人边吃奶边扎下面激情视频 | 在线播放亚洲视频 | 91亚洲精品久久91综合 | 欧美一级大片在线观看 | 国产日产高清欧美一区二区三区 | 99re热在线视频 |