《電子技術應用》
您所在的位置:首頁 > 人工智能 > 設計應用 > 基于改進Stacking集成分類算法的用戶用電信息異常識別
基于改進Stacking集成分類算法的用戶用電信息異常識別
2023年電子技術應用第8期
閆相偉,宋國壯,劉怡豪
(重慶郵電大學 通信與信息工程學院,重慶 400065)
摘要: 隨著電力用戶信息采集系統的發展,更豐富的用戶用電信息被用于用戶用電信息異常的識別。基于FDI攻擊進行虛假數據注入,構造用戶用電信息異常數據集,并提出了一種基于召回率的改進Stacking集成分類算法。該算法采用K-近鄰算法(k-Nearest Neighbors,KNN)、隨機森林模型(Random Forests,RF)、支持向量機(Support Vector Machine,SVM)以及梯度決策樹(Gradient Boosting Decision Tree,GBDT)作為Stacking結構的基分類模型;采用邏輯回歸(Logistic Regression,LR)作為Stacking結構的元分類模型。并基于召回率為基分類模型的輸出結果進行權值賦值,從而作為元分類模型的輸入數據集。通過實驗驗證,所提的基于召回率的改進Stacking集成分類算法相比于傳統Stacking集成分類算法擁有更高效的分類性能。
中圖分類號:TP3-0 文獻標志碼:A DOI: 10.16157/j.issn.0258-7998.223699
中文引用格式: 閆相偉,宋國壯,劉怡豪. 基于改進Stacking集成分類算法的用戶用電信息異常識別[J]. 電子技術應用,2023,49(8):13-18.
英文引用格式: Yan Xiangwei,Song Guozhuang,Liu Yihao. Abnormal identification of user electricity consumption information based on improved stacking integrated classification algorithm[J]. Application of Electronic Technique,2023,49(8):13-18.
Abnormal identification of user electricity consumption information based on improved stacking integrated classification algorithm
Yan Xiangwei,Song Guozhuang,Liu Yihao
(School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China)
Abstract: With the development of power user information collection system, richer user electricity consumption information is used for the identification of user electricity consumption information anomalies. In this paper, a false data injection based on the FDI attack is performed to construct a dataset of user electricity consumption information anomalies, and an improved stacking integrated classification algorithm based on recall is proposed. K-nearest neighbors algorithm (KNN), random forest model (RF), support vector machine (SVM) and gradient decision tree (GBDT) are used as the scheme of base classification model of the stacking structure. Logistic regression (LR) is used as a meta-classification model of the stacking structure. The output of the basic classification model is weighted based on the recall rate, which is used as the input data set of the meta-classification model. The proposed improved stacking classification algorithm based on recall is shown to be more efficient than the traditional stacking classification algorithm.
Key words : user electricity consumption information;anomaly identification;improved stacking integrated classification algorithm;FDI

0 引言

近年來,隨著電力用戶信息采集系統的發展和普及,積累了大量高價值的用戶用電數據[1-2]。針對因為智能電表因自然不可抗力導致的損壞、用戶惡意篡改或通信網絡受到攻擊而導致的用戶用電信息異常,建立高效的異常識別模型,減少人力排查工作量,降低經濟損失,被愈發重視[3]。

在現有的基于機器學習的用電信息異常檢測中,多數學者傾向于通過提取樣本的特征,利用機器學習模型挖掘出特征與標簽之間隱藏的規律[4]。文獻[5]提出了DT與SVM的組合模型,將DT的輸出用來訓練SVM分類器,達到了比較理想的結果。為了突破單一機器學習模型分類性能上限低的情況,文獻[6]提出了基于ISSA-RF的集成學習方法,有效提高了異常檢測的準確性。文獻[7]基于Stacking集成學習策略,按時間多維度拆解用戶日用電量指標,驗證了所提模型的有效性。

基于Stacking集成分類算法,文中提出用電信息異常檢測框架。以異常產生原因緊密相關的電氣指標為基礎,通過6種FDI攻擊方式生成異常數據集并提取特征,通過實驗驗證了Stacking集成分類算法效果高于單個基分類器。并且提出了一種基于召回率的改進Stacking集成分類算法,通過實驗證明了其有效提升了傳統Stacking集成分類算法的分類性能。



本文詳細內容請下載:http://www.rjjo.cn/resource/share/2000005496




作者信息:

閆相偉,宋國壯,劉怡豪

(重慶郵電大學 通信與信息工程學院,重慶 400065)

微信圖片_20210517164139.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 性xxxx奶大欧美高清 | 91欧美在线视频 | 91久久夜色精品国产网站 | 新久草视频 | 日本又黄又爽又免费 | 性欧美另类老妇高清 | 2级毛片 | 99国产在线 | 87精品福利视频在线观看 | 亚洲高清在线观看视频 | 一区 在线播放 | 手机看片欧美 | 亚洲图片偷拍区 | 美女黄色在线网站大全 | 一区二区不卡视频在线观看 | 日韩欧美日本 | 激情性爽三级成人 | 日本高清在线中文字幕网 | 免费在线一级片 | 久久99国产精品 | 日韩中文字幕在线观看 | 国产人成久久久精品 | 玖玖玖视频在线观看视频6 玖玖影院在线观看 | 成人毛片免费视频播放 | 久久久久女人精品毛片九一 | 久久免费看片 | 99久久精彩视频 | 精品视频一区二区三三区四区 | 看真人视频a级毛片 | 欧美视频一区二区三区在线观看 | 黄色a网站 | 成人黄色毛片 | 国产大片中文字幕在线观看 | 手机在线观看a | 国产主播大尺度精品福利 | 女人扒开腿让男人捅啪啪 | 欧美激情亚洲一区中文字幕 | a级毛片视频免费观看 | 中国国语毛片免费观看视频 | 一级爱做片免费观看久久 | 在线视频 日韩 |