文獻標志碼:A
DOI: 10.16157/j.issn.0258-7998.223689
中文引用格式: 韓珍珍,成彬,王程,等. 基于Hammerstein-Wiener模型的CSTR反應器辨識[J]. 電子技術應用,2023,49(7):30-34.
英文引用格式: Han Zhenzhen,Cheng Bin,Wang Cheng,et al. Identification of CSTR based on Hammerstein-Wiener model[J]. Application of Electronic Technique,2023,49(7):30-34.
0 引言
連續攪拌反應釜(CSTR)是工業過程中廣泛使用的一類反應器。CSTR具有高度非線性和時變性的特點,并且其機理模型非常復雜不能直接用于設計和分析控制系統。因此,為精確地描述系統在整個工作范圍內的特性,需要根據系統的輸入輸出數據,設計相應的辨識方法來建立CSTR非線性動態模型。目前一種典型的處理方法是將機理模型辨識成為易于處理的面向塊(block-orinted)的模型結構。
根據連接形式的不同,面向塊的模型結構可以分為Hammerstein[4]、Wiener,以及組合形式的Hammerstein-Wiener(H-W)模型和Wiener-Hammerstein(W-H)模型。在這4種結構中,Hammerstein和Wiener模型是兩種典型的面向塊的結構,由靜態非線性環節和動態線性環節串聯組成,并且能夠表示很多非線性系統,例如PH中和過程、電刺激肌肉、燃料電池等。Hammerstein-Wiener模型是一類具有特定結構的典型非線性系統,由一個靜態非線性環節串聯一個動態線性環節再串聯一個靜態非線性環節組成。它能夠更有效描述復雜的非線性工業過程。
近幾年,圍繞Hammerstein-Wiener模型的研究引起了越來越多的關注。針對Hammerstein-Wiener模型的參數辨識方法主要有迭代法、多信號源法、隨機梯度等方法。劉冉冉等人提出一種遞階多新息隨機梯度算法辨識Hammerstein-Wiener模型。李妍等人采用一種在線兩階段方法進行辨識。第一步采用偏差補償遞推最小二乘法在線辨識含原系統參數乘積項的參數向量。第二步采用奇異值分解法分離出原系統各參數的值。并且,一般的辨識方法中靜態非線性模塊多采用多項式擬合。多項式能夠描述普通非線性的過程,對于強非線性的過程,階次參數變多導致計算變得更加復雜,并且辨識精度也會有所下降。因此,Hammerstein-Wiener的快速辨識算法模型對于促進該模型的廣泛應用非常重要。
本文提出一種基于極限學習機的Hammerstein-Wiener模型來描述CSTR的動態過程。將CSTR的機理模型辨識成易于實施控制的Hammerstein-Wiener模型。利用極限學習機來近似模型的非線性環節,ARX模型近似模型的線性部分。仿真實驗部分比較了該算法與傳統基于多項式函數的Hammerstein模型和ARX-LSSVM Hammerstein模型預測的結果。
本文詳細內容請下載:http://www.rjjo.cn/resource/share/2000005388
作者信息:
韓珍珍1,2,成彬1,2,王程1,2,王云麗1,2
(1.河北省科學院應用數學研究所,河北 石家莊 050081;2.河北省信息安全認證技術創新中心,河北 石家莊 050081)