《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 基于小波包組合特征和LMS-LSTM的表面肌電信號分類
基于小波包組合特征和LMS-LSTM的表面肌電信號分類
2022年電子技術應用第10期
孔 康,李德盈,孫中圣
南京理工大學 機械工程學院,江蘇 南京210094
摘要: 為了利用表面肌電信號分類手勢動作,創(chuàng)新地提出了結(jié)合時域和時頻特征作為特征參數(shù),即采用小波包系數(shù)和方差的組合特征。采用自適應濾波-長短時記憶網(wǎng)絡(LMS-LSTM)結(jié)合的分類器,在設置電路濾波器一次濾波后,添加自適應濾波算法,對方差特征進行二次濾波。對5種手勢動作進行分類識別,得到93.78%的分類識別率。采用主成分分析法(PCA)降維,仍保持92.68%的平均識別率,并達到優(yōu)化結(jié)果。實驗表明,LSTM分類結(jié)果高于傳統(tǒng)線性判別和決策樹算法。
中圖分類號: TP391.41;TP181
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.212067
中文引用格式: 孔康,李德盈,孫中圣. 基于小波包組合特征和LMS-LSTM的表面肌電信號分類[J].電子技術應用,2022,48(10):92-96.
英文引用格式: Kong Kang,Li Deying,Sun Zhongsheng. Classification of surface EMG signals based on wavelet packet combination and LMS-LSTM[J]. Application of Electronic Technique,2022,48(10):92-96.
Classification of surface EMG signals based on wavelet packet combination and LMS-LSTM
Kong Kang,Li Deying,Sun Zhongsheng
School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China
Abstract: To classify gestures using surface EMG signals, an innovative method is proposed to combine the time-domain and time-frequency features as characteristic parameters, namely the combined features of wavelet packet coefficients and variances. The classifier combined with least mean square and long and short time memory network(LMS-LSTM) is innovatively adopted. After the circuit filter is set for the first filtering, LMS is added to carry out the second filtering of the different features. The classification and recognition rate of the five gestures is 93.78%. Principal component analysis(PCA) is used to reduce the dimension, and the average recognition rate is 92.68%, and the optimization result is achieved. Experimental results show that LSTM classification results are higher than traditional linear discriminant and decision tree algorithms.
Key words : EMG signals;least mean square;long and short time memory network;wavelet packet combination characteristics

0 引言

    表面肌電信號作為生物電信號的一種,由于能夠反映較多的生物運動特征,被廣泛應用于康復訓練裝置的設計和假肢控制等領域。肌電信號具有微弱性和突變性,在數(shù)據(jù)采集的過程中易受其他信號的干擾,給分類的結(jié)果帶來較大影響。目前常見的分類特征主要有時域、頻域和時頻域。于亞萍等人[1-2]利用多種母小波變換對表面肌電信號進行識別;胡曉[3]等人利用小波包系數(shù)熵作為特征向量,但時頻信號存在高延遲性。本文在小波包系數(shù)特征的基礎上,添加了延遲性較低的方差特征,創(chuàng)新地采用將時域和時頻域組合的方式作為特征參數(shù)。常見的分類器有支持向量機、隨機森林和線性判別等,但這些方法的識別率會隨輸入向量維度的增加而下降。而近年來國內(nèi)外對深度學習的研究越來越深入,此方法也被廣泛地應用于信號處理領域。另外,自適應濾波(Least Mean Square,LMS)作為一種檢測平穩(wěn)與非平穩(wěn)信號的濾波方式,被用于信號的去噪處理。本文參考長短時記憶網(wǎng)絡(Long and Short Time Memory Network,LSTM)用于不同分類的文獻[4-9]和陳景良等人[10]使用LMS對語音進行降噪、石欣等人[11-12]利用LMS-隨機森林模型對下肢動作進行分類后,綜合具有較高實時性的LMS和較高識別率的LSTM兩種算法的優(yōu)勢,采用兩種算法組合,與陳思佳等人[13]采用LSTM和卷積神經(jīng)網(wǎng)絡得到較高手勢動作識別率相比提高了實時性。




本文詳細內(nèi)容請下載:http://www.rjjo.cn/resource/share/2000004966。




作者信息:

孔  康,李德盈,孫中圣

(南京理工大學 機械工程學院,江蘇 南京210094)




wd.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
主站蜘蛛池模板: 中国的毛片| 99精品国产综合久久久久 | 国内精品久久久久影院网站 | 成年男人的天堂 | 自拍理论片 | 亚洲图片 自拍 | 国产精品视频网址 | 97国产影院 | 波多野结衣在线免费观看视频 | 国产精品久久久久久久免费大片 | 亚洲一区免费视频 | 亚洲激情视频网 | 新版天堂资源中文在线 | 成人爽a毛片在线视频 | 亚洲激情自拍 | 美国第一毛片 | 国产一级片免费看 | 国产永久在线视频 | 国产欧美精品一区二区三区 | 黄色a站 | 成年男女免费视频网站 | 日本在线视频免费看 | 国产伦精一区二区三区视频 | 亚欧美 | 美女脱了内裤张开腿让男人桶网站 | 一区二区3区免费视频 | 久久国产香蕉 | 成人a毛片 | 中文字幕一区二区三区 精品 | 特级生活片| 欧美成人福利 | 免费一级毛片私人影院a行 免费一级毛片无毒不卡 | 国产一区亚洲二区三区 | 加勒比在线免费视频 | 亚洲乱码一区二区三区国产精品 | 免费岛国小视频在线观看 | 国产视频中文字幕 | 六月丁香婷婷色狠狠久久 | 在线黄 | 亚洲国产精品久久日 | 国产欧美综合一区二区 |