《電子技術應用》
您所在的位置:首頁 > 人工智能 > 設計應用 > 具有關系敏感嵌入的知識庫錯誤檢測
具有關系敏感嵌入的知識庫錯誤檢測
2020年信息技術與網絡安全第10期
繆 琦,楊昕悅
遼寧工程技術大學 電子與信息工程學院,遼寧 葫蘆島125105
摘要: 準確性與質量對于知識庫而言尤為重要,盡管已經有很多關于知識庫不完整性的研究,但是很少有工作者考慮到對于知識庫存在的錯誤進行檢測,按照傳統方法通常無法有效捕捉知識庫中錯誤事實內在相關性。本文提出了一種知識庫具有關系敏感嵌入式方法NSIL,以獲取知識庫各關系之間的相關性,從而檢查出知識庫中的錯誤,以此提高知識庫的準確性與質量。該方法分為相關性處理和錯誤檢測兩階段。在相關性處理階段,使用NSIL的相關函數以分值形式獲取各關系之間的相關度;在錯誤檢測階段,基于相關度分值進行錯誤檢測,對于缺失主體或客體的三元組進行缺失成分預測。最后在知識庫之一Freebase生成的基準數據集“FB15K”上進行了廣泛驗證,證明了該方法在知識庫錯誤知識檢測方面有著很高的性能。
中圖分類號: TP183
文獻標識碼: A
DOI: 10.19358/j.issn.2096-5133.2020.10.005
引用格式: 繆琦,楊昕悅. 具有關系敏感嵌入的知識庫錯誤檢測[J].信息技術與網絡安全,2020,39(10):23-27,37.
Knowledge base error detection with relation sensitive embedding
Miao Qi,Yang Xinyue
School of Electronic and Information Engineering,Liaoning Technical University,Huludao 125105,China
Abstract: Accuracy and quality are very important for the knowledge base. Although there have been many researches on the incompleteness of knowledge base, few workers consider the detection of errors in the knowledge base. According to the traditional methods, it is usually unable to effectively capture the internal correlation of errors in the knowledge base, so as to check the errors. In this paper, a relational sensitive embedded method NSIL for knowledge base is proposed to obtain the correlation among the relationships between them, so as to check out the errors in the knowledge base, so as to improve the accuracy and quality of the knowledge base. This method is divided into two stages: correlation processing and error detection. In the correlation processing stage, correlation function of NSIL is used to obtain the correlation degree of each relationship in the form of score; in the error detection stage, error detection is based on the score of correlation degree, and missing component prediction is carried out for the triplet of missing subject or object. At last, the method is verified on the benchmark data set "FB15K" which is generated by Freebase, one of the largest knowledge bases. It is proved that the method has high performance in knowledge base error detection.
Key words : knowledge base;embedding model;error detection

0 引言

    如今,知識庫已經成為各種研究和應用越來越重要的和常用的數據源,如語義搜索、實體鏈接、問答系統和自然語言處理等。為了使龐大數據庫更易于操作,研究者提出了一種新的研究方向——知識庫嵌入。關鍵思想是嵌入KB(Knowledge Base)組件,包括將實體和關系轉化為連續的向量空間,從而簡化操作,同時保留KB原有的結構。實體和關系嵌入能進一步應用于各種任務中,如KB補全、關系提取、實體分類和實體解析。雖然龐大的知識庫中有數以億計的事實,但是在信息爆炸的時代遠遠不夠。大部分的研究工作聚焦知識庫對缺失邊的擴充,很少有人考慮到其中過時的、不正確的信息[1-3]。許多擴充知識庫研究將事實投射到k維向量空間,通過聚類來找到關系的相關性,很難實現高效有效處理。




本文詳細內容請下載:http://www.rjjo.cn/resource/share/2000003133




作者信息:

繆  琦,楊昕悅

(遼寧工程技術大學 電子與信息工程學院,遼寧 葫蘆島125105)

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 特黄特色三级在线观看 | 成人免费手机在线看网站 | 国产日韩欧美一区二区三区综合 | 亚洲精品欧美精品一区二区 | 真人毛片视频 | 精品三级在线观看 | 毛片美国 | 国产成a人片在线观看视频 国产成版人视频网站免费下 | 久草久| 精品视频在线看 | 成人羞羞视频国产 | 亚洲男人的天堂在线观看 | 手机看片国产在线 | 男女性生活网站 | 午夜精品久久久久久91 | 欧美成人毛片免费网站 | 在线亚洲观看 | 国产呦在线观看视频 | 精品国产1区 | 国产成年人网站 | 91理论片午午伦夜理片久久 | 99热久久国产这里是精品 | 日本a一级片| 久久精品国产屋 | 国产精品96久久久久久久 | 男人和女人搞黄 | 大片毛片女女女女女女女 | 久草网在线视频 | 免费一区二区三区视频狠狠 | 爱啪网亚洲第一福利网站 | 久久久久毛片免费观看 | 欧美一级二级三级 | 久久一本综合 | 国产在亚洲线视频观看 | 日韩精品一区二区三区视频网 | 亚洲网站www | 九九视频免费在线观看 | 亚洲天堂手机在线 | 亚洲精品久久久成人 | 黄网在线观看免费网站台湾swag | 国内精品91久久久久 |