《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 基于YOLOv7-RS的遙感圖像目標檢測研究
基于YOLOv7-RS的遙感圖像目標檢測研究
網絡安全與數據治理
梁琦1,2,楊曉文2,3,4
1 武警山西總隊參謀部,山西太原030012;2 中北大學計算機科學與技術學院,山西太原030051;3 機器視覺與虛擬現實山西省重點實驗室,山西太原030051; 4 山西省視覺信息處理及智能機器人工程研究中心,山西太原030051
摘要: 針對遙感圖像目標檢測過程中存在的背景復雜、目標特征不明顯、小目標排列密集的問題,基于YOLOv7算法,提出了一種改進的遙感圖像目標檢測算法YOLOv7-RS(YOLOv7 Remote Sensing),提高了遙感圖像的目標檢測精度。首先,向特征提取網絡中融合SimAM減少背景噪聲的干擾;其次,提出了D ELAN網絡增強遙感目標的特征提取能力;再次,利用SIOU損失函數以提高算法模型的收斂速度;最后,優化了正負樣本分配策略,改善了遙感圖像中小目標密集排列時的漏檢問題。實驗結果表明,YOLOv7-RS在NWPU VHR 10和DOTA數據集上的mAP達到95.4%和74.1%,相較于其他主流算法有了明顯提升。
中圖分類號:TP391文獻標識碼:ADOI:10.19358/j.issn.2097-1788.2024.01.005
引用格式:梁琦,楊曉文. 基于YOLOv7-RS的遙感圖像目標檢測研究[J].網絡安全與數據治理,2023,43(1):33-41.
Research on object detection in remote sensing image based on YOLOv7-RS
Liang Qi 1,2,Yang Xiaowen 2,3,4
1 General Staff of Shanxi PAP, Taiyuan 030012, China; 2 College of Computer Science and Technology, North University of China, Taiyuan 030051, China;3 Shanxi Key Laboratory of Machine Vision and Virtual Reality, Taiyuan 030051, China; 4 Shanxi Province′s Vision Information Processing and Intelligent Robot Engineering Research Center, Taiyuan 030051, China
Abstract: Aiming at the problems of complex background, obscure object features and dense array of small targets in remote sensing image target detection, we propose an improved remote sensing image target detection algorithm Yolov7-RS (Yolov7 Remote Sensing) based on the YOLOv7 algorithm, which improves the target detection accuracy of remote sensing image. Firstly, SimAM is integrated into feature extraction network to reduce the interference of background noise. Secondly, D-ELAN network enhanced feature extraction capability of remote sensing objects is proposed. Thirdly, SIOU loss function is used to improve the convergence rate of the algorithm model. Finally, the allocation strategy of positive and negative samples is optimized to improve the problem of missing detection when small objects are densely arranged in remote sensing images. Experimental results show that the mAP of YOLOv7-RS on NWPU VHR 10 data sets and DOTA data sets reaches 95.4% and 74.1%, which is significantly improved compared with other mainstream algorithms.
Key words : remote sensing image; target detection; YOLOv7-RS; SimAM; D-ELAN; SIOU

引言

遙感圖像目標檢測任務旨在從復雜多樣的遙感圖像中提取用戶關注的目標,并對其進行位置和類別的標注。基于遙感圖像的目標檢測廣泛應用于城市交通[1]、應急響應[2]和國防軍事[3-4]等方面。如何在海量的遙感圖像中精確識別并定位目標仍是現階段研究的重點。由于遙感圖像與自然圖像的成像方式不同,遙感目標尺度差異大而且具有旋轉不變性,加之遙感圖像背景復雜多樣,使得遙感圖像的目標檢測任務更加具有挑戰性。因此提高遙感圖像的目標檢測精度有著重要的研究意義。隨著卷積神經網絡的發展,當前基于深度學習的目標檢測算法主要分為雙階段目標檢測和單階段目標檢測。YOLO系列算法是典型的單階段目標檢測算法。YOLOv1[5]在2015年首次提出來,有效解決了兩階段檢測網絡推理速度慢的問題。


作者信息:

梁琦1,2,楊曉文2,3,4

(1 武警山西總隊參謀部,山西太原030012;2 中北大學計算機科學與技術學院,山西太原030051;

3 機器視覺與虛擬現實山西省重點實驗室,山西太原030051;

4 山西省視覺信息處理及智能機器人工程研究中心,山西太原030051)


文章下載地址:http://www.rjjo.cn/resource/share/2000005889


weidian.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 欧美一区二区三区不卡免费 | 日本美女高清在线观看免费 | 日韩亚洲欧美一区二区三区 | 欧美色久 | 久久久久久日本一区99 | 国产亚洲欧美在线人成aaaa | 日韩欧美日本 | 欧美成人a人片 | 最新69成人精品毛片 | 国产精品久久久久a影院 | 国产成人十八黄网片 | 全部免费毛片在线 | 丝袜足液精子免费视频 | 久久久久久全国免费观看 | 国产99在线播放 | 欧美韩国日本在线 | 手机看片国产欧美日韩高清 | 91精品久久久久亚洲国产 | 久久久久亚洲视频 | 国产三级高清 | 亚洲欧美综合一区二区三区四区 | 日韩在线观看一区二区三区 | 欧美国产日韩在线 | 久久精品一区二区三区日韩 | 欧美一级高清免费播放 | 成人性视频免费网站 | 欧美videos另类齐全 | 99在线观看免费视频 | 久久久不卡国产精品一区二区 | 日韩一级性生活片 | 欧美一级二级三级视频 | 亚洲精品成人a在线观看 | 亚洲精品国产男人的天堂 | 91在线免费观看网站 | 国产精品玖玖 | 亚洲欧美日本综合一区二区三区 | 亚洲国产精品不卡毛片a在线 | 国产精品三级国语在线看 | 国产亚洲一区呦系列 | 五月天激激婷婷大综合蜜芽 | 国产欧美一区二区三区视频 |