《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 一種高能效基4-Booth編碼并行乘法器設計
一種高能效基4-Booth編碼并行乘法器設計
2023年電子技術應用第4期
黃燾,閏閏,胡毅,尹立,謝翔
(清華大學 集成電路學院,北京 100084)
摘要: 常用的卷積神經網絡中存在數十億次乘法運算,神經網絡中乘法的大量能耗成為硬件實現神經網絡的能效瓶頸之一。為了降低乘法器的能耗,提出了一種高能效基4-Booth編碼并行乘法器。通過改進部分積生成模塊,消除了傳統方法中的補償位,使得乘法器延時減小且能耗降低。后仿真結果顯示,所提出的乘法器比現有乘法器面積減小了5.2%,延時減小了6.3%,能耗降低了10.8%。
中圖分類號:TN402
文獻標志碼:A
DOI: 10.16157/j.issn.0258-7998.223003
中文引用格式: 黃燾,閏閏,胡毅,等. 一種高能效基4-Booth編碼并行乘法器設計[J]. 電子技術應用,2023,49(4):117-122.
英文引用格式: Huang Tao,Run Run,Hu Yi,et al. An energy efficient radix-4 Booth encoding parallel multiplier design[J]. Application of Electronic Technique,2023,49(4):117-122.
An energy efficient radix-4 Booth encoding parallel multiplier design
Huang Tao,Run Run,Hu Yi,Yin Li,Xie Xiang
(School of Integrated Circuits, Tsinghua University, Beijing 100084, China)
Abstract: Common-used Convolutional Neural Networks (CNNs) contain billions of multiplications, which is the bottleneck of hardware implementation of CNNs. To reduce energy cost of multiplier, an energy-efficient radix-4 Booth encoder multiplier is proposed. By improving the partial product module, the compensation bits in conventional multipliers are eliminated, which reduces the delay and energy cost of multiplier. Post simulation indicates that the proposed multiplier reduces the area, delay and energy cost by 5.2%, 6.3% and 10.8% respectively. The proposed multiplier can be used in neural network accelerators and breaks the energy efficiency bottleneck.
Key words : CNN;multiplier;radix-4 booth encoder;high energy efficiency

0 引言

自從2012年AlexNet[1]在ImageNet比賽中獲得冠軍以來,各種結構的卷積神經網絡被發明并廣泛應用于圖像分類、目標識別、語義分割等場景。由于任務復雜度以及對準確率要求的提高,神經網絡的計算量也不斷提高,從2012年AlexNet[具有次乘法運算量,到2014年VGG-16的次乘法運算量,再到2017年SENet的次乘法運算量。大量的乘法運算使得運行神經網絡的硬件消耗巨大能耗,妨礙了神經網絡在移動端硬件平臺上的實現。Horowitz M 在2014年ISSCC上發表的論文顯示,8 bit乘法消耗的能耗是8 bit加法的6.7倍。所以,降低乘法的能耗是降低神經網絡加速器能耗的關鍵。

乘法器實現乘法可以分為如下三步:部分積生成、部分積壓縮和部分積最終相加。前人對乘法器能耗優化的研究主要關注點放在第二步,即部分積壓縮的優化上,通過使用4-2壓縮器或者7-3壓縮器]等新型壓縮器來降低乘法器能耗。4-2壓縮器、7-3壓縮器適用于操作數位寬較寬的乘法,例如16 bit或32 bit,而在8 bit乘法器中由于部分積行數較少,因此降低能耗效果甚微。在神經網絡的移動端應用中,以神經網絡的推理為主,而神經網絡的推理過程使用8 bit精度就足夠[。所以,通過設計新型壓縮器來降低8 bit乘法器的能耗不是一個有效的方法。第三步部分積最終相加實際上是兩行部分積相加得到最終乘法結果,對于這一步能耗最低的設計已有定論,使用行波進位加法器能夠以最低能耗完成部分積最終相加。第一步生產部分積的方法中,基-4 Booth編碼能夠減少一半的部分積數量,是高能效乘法器常用的方法。然而,人們采用傳統的取反加一的方法來實現基-4 Booth編碼中的求相反數,使得部分積多了若干比特的“加一”補償位。“加一”補償位不僅增加了部分積的比特總數,需要更多的加法器或壓縮器來完成部分積壓縮和最終相加,而且這些補償位出現在每行部分積的最低位,導致部分積壓縮和最終相加過程的關鍵路徑長。可見,“加一”補償位是導致8 bit乘法器能耗高、延時大的主要原因。

本文提出了一種新的高能效基4-Booth編碼并行乘法器設計,通過改進基4-Booth編碼部分積生成模塊,消除了傳統方法中的“加一”補償位,減少了部分積數目,而且使得部分積陣列規整易于壓縮,從而降低了乘法器延時和能耗。



本文詳細內容請下載:http://www.rjjo.cn/resource/share/2000005294




作者信息:

黃燾,閏閏,胡毅,尹立,謝翔

(清華大學 集成電路學院,北京 100084)


微信圖片_20210517164139.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 国内精品91久久久久 | 日韩在线免费 | 免费高清在线爱做视频 | 欧美特级特黄a大片免费 | 国产精品一区二区国产 | 亚洲国产www | 日韩三级黄色 | 欧美日韩精品一区二区视频在线观看 | 久久久久久久久久久观看 | 久久成人国产精品 | 色香欲综合成人免费视频 | 国产一级精品视频 | 一区二区成人国产精品 | 夜色爽爽| 久久福利青草狠狠午夜 | 爱爱爱久久久久久久 | 黄色影院在线观看视频 | 美女黄网站 | 精品久久久视频 | 精品久久成人免费第三区 | 亚洲精彩 | 天堂色网站 | 午夜不卡在线 | 色噜噜亚洲男人的天堂 | 国产日本三级欧美三级妇三级四 | 日本欧美视频在线 | 草草草在线观看 | 国产成人精品视频午夜 | 国产精品美女久久久久网站 | 亚洲香蕉一区二区三区在线观看 | 日本不卡在线一区二区三区视频 | 国产精品久久成人影院 | 国产精品成人免费 | 亚洲激情自拍 | 亚洲一区二区三区一品精 | 性高湖久久久久久久久aaaaa | 香港三级日本三级人妇网站 | 国产成人在线观看免费网站 | 最新亚洲精品国自产在线 | 久久国产免费观看精品3 | 亚洲国产欧美在线人成精品一区二区 |