《電子技術應用》
您所在的位置:首頁 > 通信與網絡 > 設計應用 > 基于自校驗孿生神經網絡的故障區段定位方法
基于自校驗孿生神經網絡的故障區段定位方法
2022年電子技術應用第7期
王 毅1,李 曙1,李松濃2,陳 濤2,侯興哲2,付秀元3
1.重慶郵電大學 通信與信息工程學院,重慶400065;2.國網重慶市電力公司電力科學研究院,重慶400014; 3.國家電投集團數字科技有限公司,北京100080
摘要: 針對中壓配電網區段定位方法所存在的由系統中性點接地方式、故障點距離和過渡電阻大小等環境因素,以及電流互感器極性未知或智能電表錯誤安裝等人為因素所導致的定位不準確問題,提出一種平穩小波極性校驗下基于孿生神經網絡的故障區段定位方法。首先,分析了零序電流暫態特征,指出了傳統線性相關法存在的定位缺陷;其次,使用平穩小波變換解決信號同步和設備反接的問題;最后引入孿生神經網絡對故障點上下游信號進行相似性匹配,經訓練該模型可以準確定位故障區段。通過仿真驗證,該方法具有較強的抗干擾能力,對于定位盲區也有較高的識別率。
中圖分類號: TM773
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.212354
中文引用格式: 王毅,李曙,李松濃,等. 基于自校驗孿生神經網絡的故障區段定位方法[J].電子技術應用,2022,48(7):60-66,73.
英文引用格式: Wang Yi,Li Shu,Li Songnong,et al. Fault segment location method based on self-checking siamese convolutional neural network[J]. Application of Electronic Technique,2022,48(7):60-66,73.
Fault segment location method based on self-checking siamese convolutional neural network
Wang Yi1,Li Shu1,Li Songnong2,Chen Tao2,Hou Xingzhe2,Fu Xiuyuan3
1.Communication and Information Engineering College,Chongqing University of Posts and Telecommunications, Chongqing 400065,China; 2.Chongqing Electric Power Research Institute,Chongqing 400014,China; 3.State Power Investment Group Digital Technology Co.,Ltd.,Beijing 100080,China
Abstract: For medium voltage distribution network segment positioning method, aiming at the inaccurate positioning problem caused by environmental factors such as the system neutral point grounding way, the size of the distance and the transition resistance, as well as human factors such as current transformer polarity unknown or incorrect erection smart meters and so on, this paper puts forward a kind of stationary wavelet polarity check the fault section locating method based on siamese convolutional neural network(S-CNN). Firstly, the transient characteristics of zero-sequence current are analyzed, and the localization defects of traditional linear correlation method are pointed out. Secondly, the stationary wavelet transform(SWT) is used to solve the problems of signal synchronization and equipment reverse connection. Finally, S-CNN is introduced to perform similarity matching for upstream and downstream signals of the fault point, and the model can be trained to locate the fault segment accurately. The simulation results show that this method has strong anti-interference ability and high recognition rate for blind area.
Key words : ground fault;fault location;similarity analysis;stationary wavelet transform;siamese convolutional neural network

0 引言

    我國中壓配電網主要采用中性點非有效接地方式。單相接地故障作為小電流接地系統中發生頻率最高的故障,一旦發生,由于其電氣物理特征并不明顯,并且故障電弧的燃弧不穩定;與此同時,配電網的運行方式靈活多變,不同線路結構差異較大,使得故障情況較為復雜,為小電流接地系統的故障檢測帶來了極大困難。

    單相接地故障檢測主要由故障識別、選線、定位和測距四部分構成。其中快速準確地實現故障定位能保證故障能及時處理,提高電力系統的供電可靠性。經過近幾年國內外的研究,故障選線技術已經日益成熟,并且已經在實際應用中取得了不少成果,為后續確定故障區段或故障點距離打下了良好基礎。而故障定位中諸如信號注入法[1]、中值電阻法、阻抗法[2]、行波法[3-4]等技術受配電網分支多、結構復雜、現實路徑阻抗和系統運行方式等原因影響較大,并且運行與維護成本較高,對某一故障點進行距離演算的技術其實用性都有待考量。

    故障區段定位可以進一步縮小故障查找范圍,是實現故障測距與精確定位的前提,這類方法依附于目前先進的通信技術,各饋線終端先實現故障信息上傳,主站再結合配電網結構與特征信息構建故障判別矩陣,并通過檢測算法確定最終區段[5],有良好的工程實用價值。




本文詳細內容請下載:http://www.rjjo.cn/resource/share/2000004588




作者信息:

王  毅1,李  曙1,李松濃2,陳  濤2,侯興哲2,付秀元3

(1.重慶郵電大學 通信與信息工程學院,重慶400065;2.國網重慶市電力公司電力科學研究院,重慶400014;

3.國家電投集團數字科技有限公司,北京100080)




wd.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 成人毛片免费观看视频大全 | 日韩三级观看 | 国产日本在线 | 国产欧美日韩三级 | 免费观看欧美一级片 | 性做久久久久免费看 | 欧美性aaa| 国内精品a | 黄色福利小视频 | 欧美一级大尺度毛片 | 欧美黄视频在线观看 | 日韩视频精品在线 | 免费看欧美日韩一区二区三区 | 色久视频 | 欧美成人三级伦在线观看 | 欧美a欧美 | 免费人成激情视频在线观看冫 | 毛片免费视频观看 | 日韩三级在线免费观看 | 99国产福利视频区 | 日本二区免费一片黄2019 | 91精品国产色综合久久不 | 欧美成人激情 | 久久综合精品视频 | 在线欧美国产 | 国产精品一区伦免视频播放 | 欧美精品免费线视频观看视频 | 亚洲欧美久久精品一区 | 玖玖精品视频在线观看 | 免费国产成人高清视频网站 | 亚洲最黄视频 | 国产精品福利视频萌白酱 | 成人手机在线视频 | 亚洲成人三级 | 国内一级野外a一级毛片 | 久久久久久亚洲精品影院 | 99久久免费视频在线观看 | 成年人在线网站 | 亚洲字幕波多野结衣作品 | 国产黄网 | 高清视频一区 |