《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 模擬設(shè)計(jì) > 設(shè)計(jì)應(yīng)用 > 電壓和電流反饋放大器幾乎一致
電壓和電流反饋放大器幾乎一致
摘要: 電流反饋比電壓反饋放大器有更高的轉(zhuǎn)換速率。像這樣,電流反饋比電壓反饋放大器能更好的解決高速問題。“電流反饋放大器”的名字帶有一些神秘色彩,但一般電流反饋和電壓反饋放大器應(yīng)用電路的結(jié)構(gòu)是一致的,除了幾個(gè)關(guān)鍵點(diǎn)。
Abstract:
Key words :

  電壓和電流反饋放大器應(yīng)用電路的結(jié)構(gòu)一般相同,除了幾個(gè)關(guān)鍵點(diǎn)。

  電流反饋比電壓反饋放大器有更高的轉(zhuǎn)換速率。像這樣,電流反饋比電壓反饋放大器能更好的解決高速問題。“電流反饋放大器”的名字帶有一些神秘色彩,但一般電流反饋和電壓反饋放大器應(yīng)用電路的結(jié)構(gòu)是一致的,除了幾個(gè)關(guān)鍵點(diǎn)。

  首先,電流反饋放大器電路的反饋電阻值必須保持在小范圍內(nèi)。電阻值越低,電流反饋放大器的穩(wěn)定性越差??梢栽陔娏鞣答伔糯笃鳟a(chǎn)品手冊中找到規(guī)定的電阻值。電壓反饋放大器的反饋電阻值更寬。放大器的驅(qū)動能力限制了電阻的最小值,全電路噪聲限制電阻最大值。

  圖1顯示了適于電流或電壓反饋放大器的電路。如果反饋電阻RF等于2RIN,其中RIN為輸入電阻,各通道的閉環(huán)增益為–2V/V。乍看,容易假設(shè)閉環(huán)帶寬與增益帶寬積除以各通道的增益相等,或|–2V/V|。但千萬別做這個(gè)假設(shè)!

適于電流或電壓反饋放大器的電路

  如果使用如圖1電路中電壓或電流反饋放大器,噪聲增益為:

公式

 

  其中,N為輸入通道數(shù)。帶電壓反饋放大器的電路帶寬等于增益帶寬積除以噪聲增益。例如,如果使用180MHz增益帶寬積的電壓反饋放大器,三個(gè)輸入通道(N=3),增益–2V/V,電路閉環(huán)帶寬為25.7 MHz。額外的通道減少閉環(huán)帶寬,即使輸入信號持續(xù)達(dá)到–2V/V的增益。

  如果使用如圖1電路的電流反饋放大器,放大器閉環(huán)帶寬較少的依靠閉環(huán)增益和輸入通道數(shù)。如果用這樣的放大器設(shè)計(jì)電路,首先應(yīng)該挑選合適的反饋電阻,各廠商的規(guī)格和電路噪聲增益。然后選擇合適的RIN值。從這一點(diǎn),如果電路增加通道,或許將發(fā)生信號帶寬和增益劇增的微小變化。如果那個(gè)情形出現(xiàn),退回并確定反饋電阻的選擇。對電流和電壓反饋放大器,噪聲增益通常與公式1的結(jié)果相等,但減少電流反饋放大器電路的反饋電阻值,使電路帶寬增加。

       英文原文:

  Voltage- and current-feedback amps are almost the same

  The application-circuit configurations for voltage- and current-feedback amps are generally the same, except for a few key points.

  By Bonnie Baker -- EDN, 10/25/2007

  Current-feedback amplifiers have a higher slew rate than do voltage-feedback amplifiers. As such, current-feedback amps can better solve high-speed problems than their voltage-feedback counterparts. The name “current-feedback amp” carries some mystique, but, generally, the application-circuit configurations for voltage- and current-feedback amps are the same, except for a few key points.

  First, the feedback resistor of a current-feedback-amp circuit must stay within a small range of values. Lower value resistors reduce the current-feedback amp’s stability. The feedback resistor’s higher values reduce the current-feedback amp’s bandwidth. You can find the prescribed feedback-resistor value in the current-feedback amp’s product data sheet. The voltage-feedback-amp’s feedback-resistance value is more forgiving. This amplifier’s drive capability limits the resistor’s minimum value, and the overall circuit noise limits the maximum value.

  Figure 1 sho ws a circuit that is appropriate for either a current- or a voltage-feedback amp. If the feedback resistance, RF, equals 2RIN, where RIN is the input resistance, the closed-loop gain of each channel is –2V/V. At first glance, it is easy to assume that the closed-loop bandwidth equals the gain-bandwidth product divided by each channel’s gain, or |–2V/V|. Don’t make this assumption!

 

  If you use a voltage- or current-feedback amp with the circuit in Figure 1, the noise gain is:

  where N is the

 

number of input channels. This circuit’s bandwidth, with a voltage-feedback amp, equals the gain-bandwidth product divided by the noise gain. For instance, if you have a voltage-feedback amp with a gain-bandwidth product of 180 MHz and there are three input channels (N=3) at a gain of –2V/V, the circuit’s closed-loop bandwidth is 25.7 MHz. Additional channels reduce the closed-loop bandwidth, even though the input signals continue to see a gain of –2V/V.

 

  If you use a current-feedback amp with the circuit in Figure 1, the amplifier’s closed-loop bandwidth depends less on the closed-loop gain and the number of input channels. If you design this circuit with such an amp, you would first pick the optimum feedback resistor, per the manufacturer’s specification and the circuit’s noise gain. You would then select the appropriate value for RIN. From this point, if you add channels to the circuit, a small variation in the signal bandwidth and gain peaking in circuit may occur. If that scenario is a concern, go back and refine your feedback-resistor selection. For both current- and voltage-feedback amps, the noise gain always equals the result of Equation 1, but you can reduce the feedback-resistor value with the current-feedback-amp circuit and get an increase in circuit bandwidth.


此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
主站蜘蛛池模板: 亚洲综合爱久久影院 | 亚洲欧美日韩国产一区二区精品 | 久久国产视频在线观看 | 亚洲成人免费网址 | 香蕉久久一区二区不卡无毒影院 | 亚洲精品久久久久影 | 一级特黄国产高清毛片97看片 | 久久亚洲国产精品 | 久久九九精品一区二区 | 国产精品免费大片 | 久久国产精品一国产精品 | 亚洲精品久久久久久久网站 | 亚洲视频在线一区二区 | 韩国美女激情视频一区二区 | 精品成人一区二区三区免费视频 | 成熟女人免费一级毛片 | 免费一级毛片麻豆精品 | 51国产偷自视频区视频手机播器 | 99国内精品久久久久久久 | 国产精品18久久久久网站 | 欧美另类亚洲一区二区 | 欧美成人观看 | 一级做a爰片欧美一区 | 国产成人tv在线观看 | 欧美三级视频在线观看 | 亚洲精品在线播放视频 | 偷自拍第一页 | 日本久久久久久 | 九九视频精品在线 | 国产精品一二区 | 久久久久久久综合色一本 | 日韩精品中文字幕在线观看 | 国产精品免费看久久久久 | 99在线免费观看 | 国产亚洲福利精品一区二区 | 婷婷丁香花麻豆 | 国产成人久久精品 | 美国做受三级的视频播放 | 国产精品久久久久免费 | 亚洲久草 | 久久福利资源网站免费看 |